

SPECIFICATIONS AND FEATURES

DATASHEET

WWW.UNICORECOMM.COM

UFirebirdII-UC6580

Dual-frequency GNSS Positioning Chip

Copyright© 2009-2023, Unicore Communications, Inc.

Data subject to change without notice.

Revision History

Version	Revision History	Date
R1.0	First Release	Sep.,2023
R1.1	Update the working voltage in technical specifications Update the IO power domain description Update Table 7-3	Oct., 2023

Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通","UNICORECOMM" and other trade name, trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks"). This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

Foreword

This datasheet provides information on the hardware features and performance specifications of UC6580 positioning chip.

Target Readers

This datasheet applies to technicians who have knowledge in the GNSS field but not to general readers.

Contents

1 Pr	roduct Introduction	1
1.1	Overview	1
1.2	Product Features	2
1.3	Technical Specifications	3
2 Pi	n Definition	5
2.1	Pin Assignment	5
2.2	Pin Description	
3 Cł	nip Structure	8
3.1	Block Diagram	8
3.2	Power Management Unit (PMU)	9
3.3	Clock	11
3.4	System Reset	12
4 RF	F Subsystem	13
4.1	LNA	14
4.2	Gain Block	14
4.3	Mixer	14
4.4	IF Filter	14
4.5	AGC	15
4.6	PGA and ADC	15
5 Ba	aseband Subsystem	16
5.1	Interfaces	16
5.1	1.1 UART	16
5.1	1.2 SPI Slave Interface	16
5.1	1.3 SPI Master Interface	17
5.1	1.4 I ² C	17
5.1	1.5 Serial Flash Interface	17
5.2	PIO Functions	
5.3	Time Management Unit	
5.4	Watchdog	
5.5	Timer Counter	20
6 Sy	ystem Configuration	21
6.1	Power Supply Scheme	21
6.1	1.1 DC-DC Mode	21
6.1	1.2 LDO Mode	21
6.2	BOOT Mode	22
7 El	ectrical Specifications	24

7.1	DC Electrical Specifications	24
7.1	.1 Absolute Maximum Rating	24
7.1	.2 Recommended Working Conditions	25
7.2	Analog Electrical Specifications	25
7.3	RF Electrical Specifications	26
8 Me	echanical Dimensions	27
8.1	UC6580A (QFN40 Automotive)	27
8.2	UC6580I (QFN40 Industrial)	28
9 Re	eflow Soldering	29
10 Pr	oduct Appearance and Packaging	30
10.1	Product Appearance	30
10.2	Label	30
10.3	Ordering Information	31

1 Product Introduction

1.1 Overview

UC6580 is a dual-frequency multi-constellation positioning SoC developed by Unicore Communications, with sub-meter level accuracy, supporting BDS-3 signals. It adopts 22 nm process, low-power design, compact size, RF-baseband integrated technology, and supports multi-path mitigation, anti-jamming and high precision GNSS joint positioning, which performs well in the power and size sensitive scenarios.

UC6580 is suitable for global applications. It has 96 tracking channels, supports GPS, GLONASS, BDS, Galileo, NAVIC and QZSS multi-constellation joint positioning, as well as SBAS signal reception processing, providing fast and accurate positioning experience with high performance.

UC6580 supports L1 + L5/L2 dual-frequency single point positioning and multi-system raw data output. The former is suitable for wearables, handheld devices and walking navigation, significantly improving users' experience compared with single-frequency solution especially in urban multi-path environment, while the latter is suitable for vehicle navigation, robotic and UAV applications.

UC6580 has two models including automotive grade and industrial grade (see Table 1-1).

Table 1-1 UC6580 models

Model	Grade	Package
UC6580A	Automotive	QFN40
UC6580I	Industrial	QFN40

1.2 Product Features

- 22 nm dual-frequency multi-constellation GNSS SoC, with low power consumption and compact size
- Concurrent acquisition and tracking of dual frequencies from multiple constellations, including BDS-3 signals; supports:
 - BDS B1I/B1C* + B2a or B1I/B1C* + B2I
 - GPS L1 + L5 or L1 + L2
 - Galileo E1 + E5a or E1 + E5b
 - GLONASS G1 or G1+G2
 - QZSS L1 + L5 or L1 + L2
 - SBAS L1
 - NAVIC L5*
- Real-time wideband and narrowband anti-jamming technology: detection and removal of wideband and narrowband jamming of no less than -75 dBm
- Supports L1 + L5/L2 dual-frequency single point positioning, with excellent multipath mitigation algorithm
- Supports L1 + L5/L2 dual-frequency multi-constellation raw data output, provides centimeter level RTK positioning and sub-meter level RTD positioning
- RF and baseband design with ultra-high sensitivity: acquisition sensitivity better than -148 dBm, tracking sensitivity better than -165 dBm
- Supports AGNSS
- Supports secure boot
- Automotive grade and industrial grade with QFN40 package (See the section 10.3 Ordering Information for more details)
- Conforms to the requirement of AEC-Q100 Grade2 (UC6580A)

^{*} Supported by specific firmware.

1.3 Technical Specifications

Table 1-2 Technical Specifications

Basic Information						
Channels	96 channels					
Update Rate	10 Hz (max.)					
Data Format	NMEA-0183, Unicore	NMEA-0183, Unicore, RTCM 3.x				
		Mode 1	Mode 2*			
	BDS	B1I/B1C* + B2a	B1I/B1C* + B2I			
	GPS	L1 + L5	L1 + L2			
Frequencies	Galileo	E1 + E5a	E1 + E5b			
rrequencies	GLONASS	G1	G1 + G2			
	QZSS	L1 + L5	L1 + L2			
	NAVIC	L5*	-			
	SBAS	L1	L1			
Observation Accuracy						
Horizontal Accuracy	Single point position	ing: 1.5 m				
(RMS)	RTK ¹ : 1 cm + 1ppm					
Vertical Accuracy	Single point positioning: 2.5 m					
(RMS)	RTK ¹ : 2 cm + 1ppm					
Time Accuracy (RMS)	5 ns, peak-to-peak	value 30 ns (24h)				
Velocity Accuracy ²	0.02 m/s					
TTFF ³						
Cold Start	26s					
Hot Start	2 s					
Reacquisition	1 s					
Sensitivity ^{4,5}	GNSS					
Cold Start	-148 dBm					
Hot Start	-156 dBm					
Tracking	-162 dBm					

^{*} Supported by specific firmware.

¹ RTK accuracy depends on the customer's algorithm capability, and the reference data here is given according to Unicore self-developed algorithms.

² Uniform linear motion of -33 mps using a simulator.

³ Satellite signal strength @ -130 dbm.

⁴ To get the sensitivity index, CN0 needs to achieve 41 dB (The performance might be updated).

⁵ Connect to a matched external LNA to ensure superior performance.

Reacquisition	-159 dBm						
Power Consumption ⁶ (@25°C)							
DCDC Mode	Acquisition: 40 mA@3 V	Tracking : 40 mA@3 V					
Backup Mode	5 μA @ 3 V						
Working Voltage							
Main Power Supply	2.7 V ~ 3.6 V						
IO Power Supply	2.7 V ~ 3.6 V						
Backup Power Supply 1.7 V ~3.6 V							
Communication Interfaces							
UART × 2	UART × 2						
I ² C × 2							
SPI × 2							
Reliability Test and Cert	ificates						
Reliability	Conforms to JESD47 standard (U	JC6580I)					
пспаршту	Conforms to ACE-Q100 standard (UC6580A)						
Certificates	Conforms to RoHS and REACH re	equirements					

⁶ Depends on the firmware version.

2 Pin Definition

2.1 Pin Assignment

UC6580A and UC6580I have the same pins, and Figure 2-1 gives the diagram of UC6580A as an example.

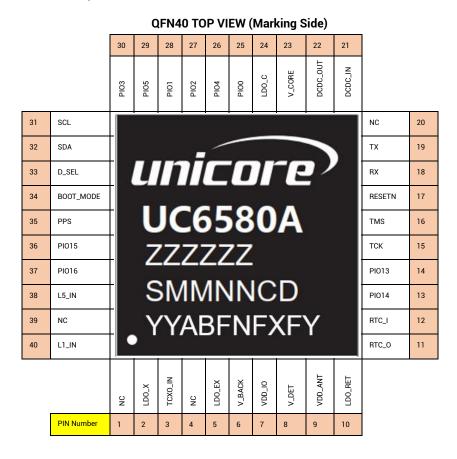


Figure 2-1 UC6580 Pin Diagram

2.2 Pin Description

Table 2-1 Description of Power Supply Pin

Name	Pin	Туре	Description
DCDC_IN	21	Power	DC/DC power input
DCDC_OUT	22	Power	DC/DC power output
V_CORE	23	Power	Core power input
V_BACK	6	Power	Backup power input
VDD_IO	7	Power	IO/TCXO power input
LDO_C	24	Power	Core LDO voltage output
LDO_X	2	Power	TCXO LDO voltage output
LDO_EX 5 Power		Power	Used by the chip itself, and cannot
		1 OWCI	supply power to other circuits
NC	20	Power	Keep NC
V_DET ⁷	8	Power	Antenna detection power input
VDD_ANT	9	Power	Antenna power output
LDO_RET	10	Power	Backup power output
GND			Ground

Table 2-2 Analog Pin Description

Name	Pin	Туре	Description
L1_IN	40	RF	L1 RF input
L5_IN	38	RF	L5 or L2 RF input
TCXO_IN	3	Clock	26 MHz TCXO input
RTC_I	12	Clock	32.768 kHz crystal or digital waveform input
RTC_O	11	Clock	32.768 kHz clock output
NC	4	-	Keep NC
NC	39	-	Keep NC
NC	1	RF	Keep NC

Table 2-3 PIO Pin Description

Name	Pin	Туре	IO Reset	Description
PIO0	25	10	I/Pull-up	GPI00
PI01	28	10	I/Pull-up	GPI01
PIO2	27	10	I/Pull-up	GPI02
PIO3	30	10	I/Pull-up	GPI03
PIO4	26	10	I/Pull-up	GPI04

⁷ Not supported currently.

Name	Pin	Туре	IO Reset	Description
PIO5	29	Ю	I/Pull-up	GPI05
TX	19	10	I/Pull-up	GPI06
RX	18	10	I/Pull-up	GPI07
SCL	31	10	I/Pull-up	GPI08
SDA	32	Ю	I/Pull-up	GPI09
D_SEL	33	10	I/Pull-up	GPI010
PPS	35	10	I/Pull-up	GPI011
BOOT_MODE	34	10	I/Pull-up	GPI012
PI013	14	10	I/Pull-up	GPI013
PI014	13	10	I/Pull-up	GPI014
PI015	36	10	I/Pull-up	GPI015
PI016	37	10	I/Pull-up	GPI016
TMS	16	10	I/Pull-up	GPI017
TCK	15	10	I/Pull-up	GPI018
RESETN	17	10	I/Pull-up	-

3 Chip Structure

3.1 Block Diagram

Figure 3-1 UC6580 Block Diagram

3.2 Power Management Unit (PMU)

The Power Management Unit (PMU) provides four power domains that are internally generated by LDOs and supervised by several voltage monitors:

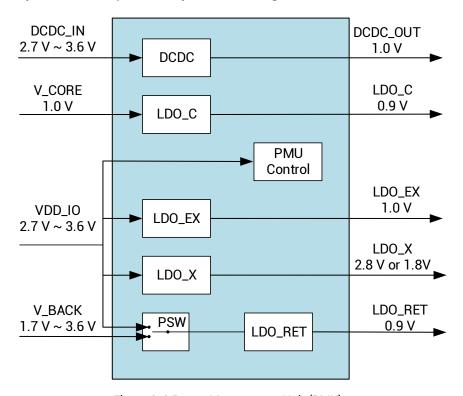


Figure 3-2 Power Management Unit (PMU)

Core

Core domain is the main power domain for the RF and digital part inside the chip. The subsequent LDO_C converts the V_CORE input to respective voltages, which must be connected with a decoupling capacitor through the LDO_C pin. LDO_C drives the digital logic parts.

IO

IO power domain is powered by VDD_IO, including the chip IO devices, on-chip Flash, etc. The voltage supply of VDD_IO is $2.7 \text{ V} \sim 3.6 \text{ V}$. Except IO devices, other PMU devices are powered by a dedicated LDO_EX. LDO_EX must be connected with a decoupling capacitor through LDO_EX pin.

Backup

Backup domain runs the RTC section and Retention RAM. This domain uses VDD_IO and V_BACK as the voltage sources. When the range of VDD_IO is normal, it uses VDD_IO, otherwise uses V_BACK. The allowed range of V_BACK is $1.7 \text{ V} \sim 3.6 \text{ V}$. Therefore, an ordinary lithium battery or other battery can be directly connected to this pin. If you do not need the RTC and backup function, you must connect the V_BACK pin to VDD_IO.

TCXO

The clock domain supplies power to TCXO. This domain has a dedicated LDO called LDO_X, which is also powered by VDD_IO. If TCXO is powered by LDO_X, LDO_X should be connected to the power pin of TCXO and be decoupled by a capacitor. You can also choose an external power source other than LDO_X to power TCXO.

Based on the above division of power domains and hardware design, UC6580 has three modes of power consumption:

- Running mode: Every power source of the chip is normal, CPU runs normally, and the power supply of each domain is set by the software. All events, including external interruption, communication request, timing, etc., can be processed normally.
- V_BACK mode: The IO and main power supply of the chip is cut off from the outside, and there is only V_BACK power supply left. At this time, the power consumption of the chip drops to a very low level, and the specific functions and power consumption depend on the mode set by the software. It can wake up as soon as it is powered on.
- Power off mode: All power supplies are cut off from the outside, and the chip does not work at all.

3.3 Clock

The chip requires an external 26 MHz clock, which is generated by TCXO, to provide reference frequency for RF and baseband PLL. In order to ensure the stable operation of the PLL when the chip is booted, the 26 MHz clock should work stably within 10 ms after the main and IO domains are powered.

The chip supports RTC crystal input. RTC crystal is usually driven by an on-chip 32.768 kHz oscillator, which connects to an external 32.768 kHz crystal. The chip also supports external RTC clock input. The input signal amplitude should be 0.9 V to 1.98 V, and the input signal frequency should be 32.768 kHz. The RTC clock frequency offset must be less than 20 ppm.

Table 3-1 Clock

	Frequency Source	Frequency	Remark
System Clock	тсхо	26 MHz	Work stably within10 ms after the main and IO domains are powered
RTC	On-chip oscillator	32.768 kHz	Connect an external 32.768 kHz crystal
Clock	External digital waveform generator	32.768 kHz	Input signal amplitude should be 0.9 V to 1.98 V

If the main power supply and IO power supply fail and a backup battery is connected to V_BACK, the baseband, RF and CPU do not work, while RTC keeps running to provide time reference for the receiver. This operating mode is called RTC time keeping mode. Under this mode, the relevant data are saved in Retention RAM for GNSS hot start.

RTC time keeping mode is a prerequisite for GNSS hot start. Under this mode, RTC provides time information and Retention RAM provides ephemeris and almanac information. If you do not need GNSS hot start function, connect RTC_O to ground. In the AGNSS-based system, if time and ephemeris are provided through network as assistance, RTC is not necessary.

Table 3-2 RTC Timing Keeping Mode

Mode	Power	Working Parts				
Mode	Supply	BB	RF	CPU	RTC	Retention RAM
RTC time keeping	V_BACK				•	•

3.4 System Reset

According to the power structure of UC6580, there are two reset domains: Core domain and Backup domain.

Core domain can be reset by three methods:

- RESETN is the reset pin of the chip. When the voltage level at RESETN is low, the
 reset signal will be sent to the Core domain. The duration of RESETN low level
 should be more than 10 us.
- The chip's software reset, which is controlled by the firmware.
- Watchdog RESET.

If any of the above reset sources issues a reset signal, the Core domain is reset.

Backup domain can be reset by two methods:

- When the voltage of V_BACK is lower than 1.2 V, it will trigger the reset.
- The software system sends the RTC RESET signal, which is controlled by the firmware and only resets the RTC counter.

4 RF Subsystem

The RF subsystem of UC6580 adopts dual-frequency dual-channel architecture. The frequency of the input signal ranges from 1166MHz to 1620MHz. The received GNSS signals are amplified by a single-ended Low Noise Amplifier (LNA), and then fed to a RF gain block to be further amplified, thus reducing the noise figure requirements for the mixer. The RF gain block also provides a single-ended to differential conversion. After completing the orthogonal down-conversion, multi-GNSS signals are divided into two channels. Afterwards, the I and Q signals of both channels are low-pass filtered and amplified by a separate Programmable Gain Amplifier (PGA), after which both I and Q signals are sent to the 6-bit high-speed ADC section for data conversion.

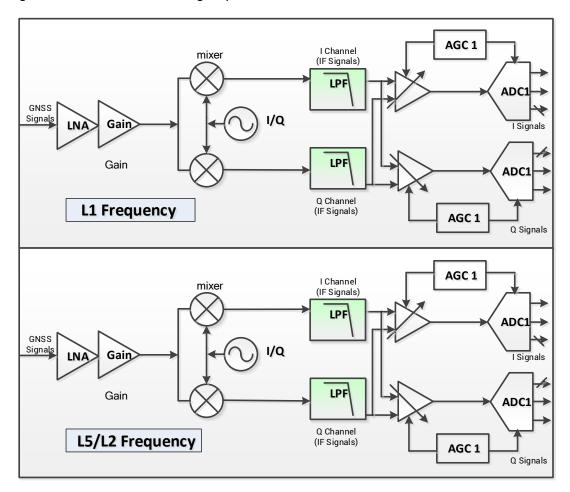


Figure 4-1 RF Subsystem

The RF subsystem of UC6580 supports any mode below:

- Dual-frequency L1+L5
- Dual-frequency L1+L2
- L1 single-frequency multi-constellation mode.

4.1 LNA

The low noise amplifier (LNA) makes use of a single stage configuration and requires external matching to function satisfactorily. For improved performance, an external LNA should be added, of which the gain range is recommended to be within 17dB~50dB. In an environment with complex interference, it is necessary to use an external SAW filter to suppress out-of-band interference.

4.2 Gain Block

A single stage differential amplifier follows the LNA providing further amplification and conversion from single-ended signals to differential signals.

4.3 Mixer

UC6580 uses the active I/Q mixer to first convert the multi-GNSS signals to an intermediate frequency signals. At this stage, the signals are split into two IF channels after down-conversion.

4.4 IF Filter

UC6580 integrates an I/Q low-pass filter to remove the out-of-band noise after RF down-conversion, which improves the noise performance of the RF system.

4.5 AGC

UC6580 supports Automatic Gain Control (AGC), which reduces the convergence time and computing cost. AGC controls the gain configuration of each module in the radio frequency data link according to the signal energy required by the RF system.

4.6 PGA and ADC

UC6580 integrates Programmable Gain Amplifier (PGA) and high-speed Analog Digital Convertor (ADC). The gain value of PGA is configured by AGC to ensure that the signal energy output by ADC remains unchanged when the RF input signal energy changes within a certain range, thereby ensuring that the output of the high-speed ADC does not saturate. The high-speed ADC supports the output of I/Q complex sampling signals.

5 Baseband Subsystem

UC6580 provides multiple interfaces for data communication or access to external devices, such as UART, SPI, I²C, GPIO, etc.

5.1 Interfaces

5.1.1 **UART**

UC6580 makes use of two UART interfaces: UART1 and UART2. Both of them can be used for communication with a host.

UART1By default, PIO6/PIO7 corresponds to UART1, which serves as the main UART in standard firmware version. The communication interface of UC6580 can be mapped to different PIO interfaces via BOOT_MODE. PIO6/PIO7 can also be used as SPI, and in this case, there is no UART1 function. See the description in section 6.2 for the use of BOOT_MODE and the corresponding communication interface mapping.

UART2 can usePI015/PI016. It is mainly used for transmitting or debugging auxiliary information.

5.1.2 SPI Slave Interface

UC6580 uses SPI slave interface as an optional way to communicate with the host to transfer data. At the same time, it supports loading firmware via the SPI slave interface. The maximum transmission rate using SPI slave is 8 Mbps, and the maximum SPI clock frequency is 8 MHz. When the SPI slave loads the firmware, the maximum transmission rate is 4 Mbps.

The SPI slave interface shares PIO6/PIO7 and PIO8/PIO9 with UART1 and I²C respectively. Users can select the communication interface via D_SEL and BOOT_MODE. If PIO6/PIO7/PIO8/PIO9 is used as SPI slave interface, there are no UART1 and I²C1 functions; if PIO6/PIO7 and PIO8/PIO9 are used as UART1 and I²C1, there is no SPI slave interface.

When the SPI slave interface is used for host communication, PIO14 should be used as the SRDY (Slave Ready) signal to indicate whether the SPI slave is ready.

5.1.3 SPI Master Interface

UC6580 provides SPI master interface by configuring PIO0/PIO1/PIO3/PIO4, which can be used to communicate with or control other SPI slave devices. The maximum transmission rate of the SPI master interface is 16 Mbps, and the maximum SPI clock frequency is 16 MHz.

The SPI master interface is disabled by default.

5.1.4 I²C

UC6580 provides two I²C interfaces (I²C1 and I²C2) to communicate with the host or sensor, of which the I²C1 interface works in slave mode for firmware loading and communicating with the host, and I²C2 works in master mode to connect to the external sensor. The I²C interfaces are compatible with the I²C protocol, supporting the transmission rates of 100 Kbps, 400 Kbps, and 3.4 Mbps.

By default, the I²C1 interface uses PIO8/PIO9, and the BOOT_MODE pin should be in pull-up or open-circuit state when booting. For more information, please refer to the description in section 5.2. I²C2 can be mapped to PIO13/PIO14 through customized firmware.

5.1.5 Serial Flash Interface

Serial Flash interface is used to connect UC6580 with external SPI Flash. SPI Flash can be used for firmware storage and update.

The serial Flash interface uses PIO0/PIO1/PIO2/PIO3/PIO4/PIO5 only when the BOOT_MODE pin is in pull-up or open-circuit state when booting; otherwise, the serial Flash interface is invalid.

5.2 PIO Functions

The PIO module may be configured as GPIO or as the aforementioned communication interfaces. The following table describes all PIO functions.

Table 5-1 PIO Functions

PIO #	Default Function	I/O	Description	Alternate Function
0	GPI0	I/O	-	SPI master MISO SPI flash D0
1	GPIO	I/O	-	SPI master MOSI SPI flash D1

PIO#	Default Function	1/0	Description	Alternate Function
2	GPI0	I/O	-	PWM0 UART2 RXD SPI flash WP
3	GPI0	1/0	-	PWM1 UAR1 TXD SPI flash HOLD
4	GPI0	I/O	-	SPI master CLK SPI flash CLK
5	GPIO	I/O	-	SPI master CSN SPI flash CSN
6	GPIO	1/0	Controlled by BOOT_MODE when booting: UART1 TXD (if BOOT_MODE is high when booting) SPI slave MISO (if BOOT_MODE is low when booting)	UART1 TXD SPI slave MISO
7	GPIO	1/0	Controlled by BOOT_MODE when booting: UART1_RXD (if BOOT_MODE is high when booting) SPI slave MOSI (if BOOT_MODE is low when booting)	UART1 RXD SPI slave MOSI
8	GPIO	1/0	Controlled by BOOT_MODE when booting: I ² C1 SCL (if BOOT_MODE is high when booting) SPI slave CLK (if BOOT_MODE is low when booting)	I ² C1 SCL SPI slave CLK
9	GPIO	1/0	Controlled by BOOT_MODE when booting: I ² C1 SDA (if BOOT_MODE is high when booting) SPI slave CSN (if BOOT_MODE is low when booting)	I ² C1 SDA SPI slave CSN

18

PIO#	Default Function	1/0	Description	Alternate Function
10	GPIO	1/0	Communication interface selection pin. Select from PIO6 to PIO9. Only valid when booting. This pin is pulled up if it is not connected.	PPS D_SEL 32.768 kHz clock
11	GPI0	I/O	-	PPS EVENT UART1 RXD
12	GPIO	1/0	Bootstrap mode selection pin. Select firmware loading address, external/internal Flash or SPI interface. Only valid when booting. This pin is pulled up if it is not connected.	BOOT MODE PPS RF_READY UART1 TXD
13	GPI0	I/O	-	I ² C2 SCL ODO_DIR EVENT
14	GPI0	I/O	-	I ² C2_SDA ODO_CNT EVENT
15	GPIO	1/0	-	UART2 TXD LO1_DET
16	GPIO	I/O	-	UART2 RXD BLK LO2_DET
17	TMS	1/0	Debug interface	ODO_DIR GPIO
18	тск	I/O	Debug interface	ODO_CNT GPIO

If you want to change the I/O alternate function, please contact the UNICORECOMM FAE.

5.3 Time Management Unit

The Time Management Unit (TMU) manages all clock sources in the baseband, using more accurate clocks to calibrate less accurate clocks.

5.4 Watchdog

UC6580 contains two watchdog timers which prevent the system-lockup caused by the software deadlock. During normal operation, the firmware resets the watchdog's internal counter at regular intervals before the timer overflow occurs.

5.5 Timer Counter

The timer counter has an EVENT input and a PPS output. EVENT can be input via PIO11, PIO13 or PIO14, but only one EVENT can be input at a time. Event input is the external timestamp event relative to GPS time.

EVENT function is disabled by default. Please contact Unicore FAE if necessary.

PPS can be output via PIO11. PPS outputs pulse sequence synchronized with GPS or UTC time grid, and the time interval can be configured over a wide range of frequency.

All input and output signals are synchronized with the internal clock frequency of the receiver, so that the inherent maximum quantization error of the input and output signals reaches ±10 ns.

6 System Configuration

6.1 Power Supply Scheme

UC6580 supports two power supply schemes, including internal DC-DC mode and LDO mode.

If you do not use the hot start and backup function, connect the V_BACK to VDD_IO

6.1.1 DC-DC Mode

In this mode, the main power (V_Main) connects to the pin DCDC_IN, and the output of the DCDC module DCDC_Out provides the power to the rest circuits. At this time, the system is powered by the internal DC-DC:

- DCDC_IN and VDD_IO use the same power.
- V_BACK can use an independent power, or use the same power as DCDC_IN and VDD_IO.
- The system power supply is input by DCDC_IN, and DCDC_Out is connected to the V_CORE input pin.
- TCXO is powered by LDO_X. The voltage could be 1.8 V or 2.8 V.

6.1.2 LDO Mode

In this mode, the main power (V_Main) connects to DCDC_IN while DCDC_IN and DCDC_Out are short-circuited and the internal DC-DC is bypassed, so that the V_Main provides the power to the rest circuits directly. At this time:

- DCDC_IN and DCDC_OUT are short-circuited together.
- DCDC_IN and VDD_IO use the same power.
- V_BACK can use an independent power, or use the same power as DCDC_IN and VDD_IO.
- The system power supply is input by VDD_IO and output to V_CORE through LDO_EX.
- TCXO is powered by LDO_X. The voltage could be 1.8 V or 2.8 V.

For specific design scheme of the above modes, please refer to *UC6580 Hardware Reference Design*.

6.2 BOOT Mode

The boot mode of UC6580 is a standalone mode which is controlled by D_SEL (PIO 10) and Boot_Mode (PIO 12). According to the two PIO's status, the mode divides into three situations:

- Boots from UART1 (PIO6 and PIO7) and I²C1 (PIO8 and PIO9)
- Boots from UART1 (PIO11 and PIO12)
- Boots from SPI slave (PIO6 to PIO9).

See Table 6-1 to Table 6-5 for the details of the pin function configuration at boot and the boot mode description.

BOOT_MODE is valid only at power-on or before the RESETN signal is sent. After the RESETN signal is sent, the BOOT_MODE pin can be used as an ordinary PIO pin.

Table 6-1 Pin Function Configuration at Boot

D 051	BOOT_	Boot	Boot Time				D 1
D_SEL	MODE	Mode	PI06, 7	PI08/9	PI011/12	After Boot	Remark
1	X	Boots from UART1 and I ² C1	UART1	I ² C1	X	Outputs the positioning information through UART1 (PIO 6 and PIO7)	
0	1	Boots from UART1	X		UART1	Outputs the positioning information through SPI slave (PIO 6 to PIO9)	Boots from UART1 (PIO 11 and PIO12), no I ² C1 boot
0	0	SPI slave	SPI slave		Х	Outputs the positioning information through SPI slave (PIO 6 to PIO9)	

The boot steps are as follows:

1. CPU detects the firmware upgrade request from the interfaces.

Table 6-2 UART1 and I²C1 Boot Mode

If	Then
CPU detects a firmware upgrade	CPU starts to adapt the baud rate and upgrade the
request from UART1 within 20 ms	firmware. After the upgrade, run the firmware.
after power-on or reset.	
CPU detects a firmware upgrade	CPU starts to adapt the I ² C1 clock and upgrade the
request from I ² C1 within 20 ms after	firmware. After the upgrade, run the firmware.
power-on or reset.	
CPU does not detect a firmware	Do step 2
upgrade request from UART1 or I ² C1	
within 20 ms after power-on or reset.	

Table 6-3 UART1 Boot Mode

If	Then
CPU detects a firmware upgrade	CPU starts to adapt the baud rate and upgrade the
request from UART1 within 20 ms	firmware. After the upgrade, run the firmware.
after power-on or reset.	
CPU does not detect a firmware	Do step 2
upgrade request from UART1 within	
20 ms after power-on or reset.	

Table 6-4 SPI Slave Boot Mode

If	Then
CPU detects a firmware upgrade	CPU upgrades the firmware and runs it after the
request from SPI slave within 20 ms	upgrade.
after power-on or reset.	
CPU does not detect a firmware	Do step 2
upgrade request from SPI slave within	
20 ms after power-on or reset.	

2. CPU detects built-in flash and external flash in order.

Table 6-5 CPU Detects Flash

If	Then
CPU detects a firmware in the built-in	CPU reads the firmware and runs it.
flash.	
CPU does not detect the firmware in	CPU tries to read the firmware in external flash and
the built-in flash.	runs it.

7 Electrical Specifications

7.1 DC Electrical Specifications

7.1.1 Absolute Maximum Rating

Table 7-1 Absolute Maximum Rating

Symbol	Parameter	Min.	Max.	Unit
DCDC_IN	Input voltage of the internal DC/DC converter	-0.2	3.6	٧
V_CORE	Supply voltage of baseband main core and RF -0.2 1.09		1.05	٧
DCDC_OUT	Output voltage of the internal DC/DC converter	-0.2	1.05	٧
VDD_IO	Input voltage of I/O, LDO_X and flash	-0.2	3.6	V
V_BACK	Supply voltage of backup domain	-0.2	3.6	V
TCXO_IN	Input voltage on TCXO_IN	-0.2	2.9	٧
RTC_I	Input voltage on RTC_I	-0.2	1.98	V
Vidig	Input voltage on PIO	-0.2	3.6	V
Prfin	RF input power on LNA_IN		+15	dBm
Ptot	Total power		360 (@room temperature)	mW
Tjun	Junction temperature	-40	+125	°C
Ts	Storage temperature	-50	+150	°C

The ripple voltage of all the input voltages must be within 50 mV.

7.1.2 Recommended Working Conditions

Table 7-2 Recommended Working Conditions

Symbol	Parameter	Min.	Typical	Max.	Unit
DCDC_IN	Input voltage of internal	2.7	3.3	3.6	V
DCDC_IN	DC/DC converter	2.1			V
V_CORE	Supply voltage of baseband	0.9	1.0	1.05	٧
	main core and RF	0.9			
VDD_IO	Input voltage of I/O, LDO_X	2.7	3.3	2.6	V
	and flash	2.1	3.3	3.6	
V DACK	Supply voltage of backup	1.7	3.3	3.6	V
V_BACK	domain	1.7	3.3	3.0	V

7.2 Analog Electrical Specifications

Table 7-3 Analog Electrical Specifications 1

Symbol	Parameter	Min.	Typical	Max.	Unit
LDO_X	LDO_X output voltage (1.8 V TCXO)	1.75	1.8	1.95	٧
LDO_X	LDO_X output voltage (2.8 V/2.9 V TCXO)	2.75	2.8	2.95	٧
LDO_RET	LDO_RET output voltage	0.6	0.9	0.95	٧
LDO_C	LDO_C output voltage	0.85	0.9	0.95	٧
LDO_EX	LDO_EX output voltage	0.95	1.0	1.05	٧
V_DET ⁸	Antenna detection input	2.7	3.3	3.6	٧
VDD_ANT ⁹	Antenna power output	2.7	3.3	3.6	٧
RTC_I	32.768 kHz crystal or digital waveform input			1.98	٧
RTC_O	32.768 kHz clock output			1.98	٧
DCDC_OUT	Output voltage of the internal DC/DC converter	0.9	1.0	1.05	٧
TCXO_IN_Vpp	TCXO input peak-to-peak voltage	0.5	0.6	1.98	Vpp

Table 7-4 Analog Electrical Specifications 2: RTC Specifications

Symbol	Parameter	Condition	Min.	Typical	Max.	Unit
RTC_Fxtal	RTC crystal oscillator			32768		Hz
NTC_FXtd1	resonate frequency			32100		П

⁸ Not supported currently.

 $^{^9\,}$ The output voltage of VDD_ANT = V_DET- (antenna current) * (10 $\Omega).$

Symbol	Parameter	Condition	Min.	Typical	Max.	Unit
RTC_T_start	RTC startup time		0.2	1	2	s
RTC_CL	RTC load capacitance	ESR = 80 kΩ		12.5		pF
RTC_Vil	RTC low level input voltage	Shared RTC oscillator input	0.0		0.2	V
RTC_Vih	RTC high level input voltage	Shared RTC oscillator input	0.9		1.98	V

7.3 RF Electrical Specifications

Table 7-5 RF Electrical Specifications

Symbol	Parameter	Condition	Min.	Typical	Max.	Unit
L1_IN	Receiver input		1559.098	1561.098	1606	MHz
	frequency		1559.096	1301.096	1000	IVITZ
L5_IN	Receiver input		1166.45	1176.45	1217.14	MHz
	frequency					
LNA_IN	LNA input			50		Ω
	impedance					
LNA_S11	LNA input return loss	50Ω environment		-10		dB
NFtot	Receiver cascaded	50Ω environment		5		dB
	noise figure	50Ω environment				иь
Ext_Gain	External LNA gain	50Ω environment	15	17	60*	dB
TCXO_Freq	TCXO frequency	0.5ppm		26		MHz

 $^{^{*}}$ When the external LNA gain falls into this range, the system's CN0 fluctuates by 1dB.

8 Mechanical Dimensions

8.1 UC6580A (QFN40 Automotive)

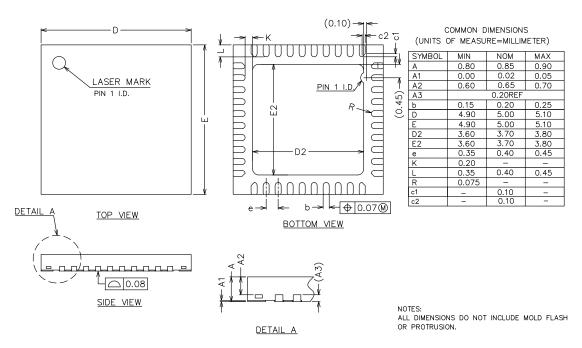
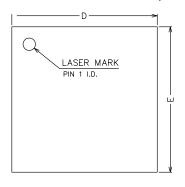
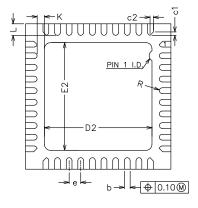
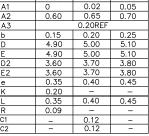
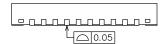




Figure 8-1 UC6580A (QFN40 Automotive) Mechanical Dimensions


UC6580I (QFN40 Industrial) 8.2



(UNITS OF MEASURE=MILLIMETER)					
SYMBOL	MIN	NOM	MAX		
A	0.80	0.85	0.90		
A1	0	0.02	0.05		
A2	0.60	0.65	0.70		
A3	0.20REF				
b	0.15	0.20	0.25		
D	4.90	5.00	5.10		
E	4.90	5.00	5.10		
D2	3.60	3.70	3.80		

COMMON DIMENSIONS

NOTES: ALL DIMENSIONS REFER TO JEDEC STANDARD MO-220 WHHE-1.

Figure 8-2 UC6580I (QFN40 Industrial) Mechanical Dimensions

9 Reflow Soldering

The reflow soldering temperature curve is recommended as shown in Figure 9-1 below (M705-GRN360 is recommended for solder paste).

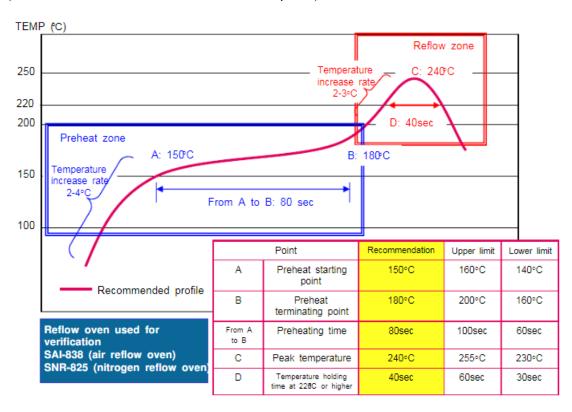


Figure 9-1 Reflow Soldering Temperature Curve (QFN40)

10 Product Appearance and Packaging

10.1 Product Appearance

UC6580A (QFN40 Automotive)

UC6580I (QFN40 Industrial)

Figure 10-1 UC6580 Product Appearance

10.2 Label

Figure 10-2 Label Description

Table 10-1 Code Description

Code	Description
UC6580	Product model
Α	Automotive grade
1	Industrial grade

10.3 Ordering Information

Table 10-2 Ordering Information

Model	Chip Scale Package	Built-in	Operating	Grade	Product
		Flash	Temperature		Package
UC6580A	QFN40	Yes	-40 °C to	Automotive	Tape & Reel,
	5 mm × 5 mm × 0.85mm	165	105 °C	Automotive	3000 pcs/reel
UC6580I	QFN40	Yes	-40 °C to 85 °C	Industrial	Tape & Reel,
	5 mm × 5 mm × 0.85mm	169			3000 pcs/reel

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路 7 号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094

www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicorecomm.com