

SPECIFICATIONS AND FEATURES

DATASHEET

WWW.UNICORECOMM.COM

UFirebird-UC6226 GNSS Positioning Chip

Copyright© 2009-2023, Unicore Communications, Inc. Data subject to change without notice.

Revision History

Version	Revision History	Date		
Ver. 1.0	First Edition			
Ver. 2.0	Add WLCSP	April. 2019		
R3.0	Two options of VDDIO input voltage are clarified in chapter	Oct. 2019		
	10.4			
R3.1	Update the Copyright time	Apr. 2020		
R3.2	Align the grade rules	Apr. 2020		
R3.3	Add the footnote of CEP	Oct. 2020		
R3.4	Update the voltage of V_BCKP, VDD_IO, and the V_DCDC_IN	Oct. 2021		
	current, etc.; Editorial modifications; Add reflow soldering,			
	ESD standard, and the requirement for voltage ripple;			
	Add the requirement for RTC_I pin when RTC is not used			
R3.5	Modify the description of TCXO and crystal	Nov. 2021		
R3.6	Delete Sensor Hub and SPI flash in the system block	Dec. 2021		
	diagram; Add the explanation of SPI in section 3.1.2			
R3.7	Update the parameters of VDD_IO			
R3.8	Modify the requirement for V_BCKP, RTC_I and RTC_O	Nov. 2022		
	when RTC is not used.			
	Add PPS output current in Table 7-3.			
	Update the sensitivity parameters in Table 1-1.			
R3.9	Update the typical current in Table 7-7;	Aug. 2023		
	Add details about the reset pin in section 5.3;			
	Add definition of pin0 in Table 6-1			

Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通", "UNICORECOMM" and other trade name, trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks").

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

Foreword

This datasheet offers you information in the features of the hardware, the installation, specification and use of UNICORECOMM UC6226 product.

Readers it applies to

This datasheet is applied to technicians who know GNSS receivers to some extent but not to the general readers.

Contents

1.	Functional Characteristics					
	1.1.	Overview1				
	1.2.	Features2				
	1.3.	Performance Specifications2				
	1.4.	System Block Diagram				
	1.5.	Satellite Navigation Systems				
		1.5.1. GPS				
		1.5.2. GLONASS				
		1.5.3. BDS4				
		1.5.4. Galileo4				
	1.6.	Protocols and Interfaces4				
		1.6.1. Terms and Abbreviations4				
2.	RF Su	ubsystem6				
	2.1.	LNA6				
	2.2.	Gain Block6				
	2.3.	Mixer				
	2.4.	I/Q Low-Pass Filter (LPF)7				
	2.5.	PGA7				
	2.6.	ADC				
3.	Base	band Subsystem8				
	3.1.	Interfaces8				
		3.1.1. UART				
		3.1.2. SPI				
	3.2.	PIO				
	3.3.	Watchdog10				
	3.4.	Timer Counter				
	3.5.	Clock				
		3.5.1. TCXO10				
		3.5.2. PLL10				
		3.5.3. RTC10				
		3.5.4. Clock Source Combination11				

	3.6. Power Management Unit (PMU)					
		3.6.1. DC/DC Converter	13			
4.	Oper	Operating Modes14				
	4.1.	Continuous Tracking Mode	14			
	4.2.	Sleep Mode	14			
5.	Syste	em Configuration ۱؛				
	5.1.	Configure the Communication Interface	15			
	5.2.	Configuration Pins	15			
	5.3.	System Reset	15			
	5.4.	Power on Sequence	16			
		5.4.1. DC/DC Power-on and Sequence	17			
		5.4.2. DC/DC Bypass Power-on and Sequence	18			
		5.4.3. Power on Sequence for Backup Region				
6.	Pin D	Definitions	20			
	6.1.	Pin Distribution	20			
	6.2.	Pin Description	21			
7.	Elect	rical Specifications				
	7.1.	Maximum Absolute Rating	23			
	7.2.	Working Conditions	24			
		7.2.1. DC Electrical Characteristics	24			
		7.2.2. Analog Parameters	25			
		7.2.3. RF Parameters				
		7.2.4. Current Consumption				
	7.3.	Reference Power Requirements	27			
8.	Mech	nanical Specifications				
9.	Relia	bility Test and Certificate	29			
	9.1.	Reliability Test	29			
	9.2.	Certificate	29			
10.	Reflo	ow Soldering				
11.	Prod	uct Appearance and Packaging				
	11.1.	Appearance	31			
	11.2.	Label	31			

	11.3. Packaging	
12.	Ordering Codes	

1. Functional Characteristics

1.1. Overview

Figure 1-1 UFirebird-UC6226 Chip

UNICORECOMM UFirebird[™] (UC6226) is designed with 28 nm process and efficient PMU, features low power consumption and ultimate compact size, which significantly increase the battery life of user equipment.

UC6226 is suitable for global applications, supports GPS, GLONASS, BDS, Galileo and multisystem positioning, as well as supports a variety of SBAS signal reception processing, thus providing users with fast and accurate high-performance positioning experience.

UC6226 can connect with the gyroscope, accelerometer, and other sensors to realize fusion positioning. With the accurate scenes and pattern recognition, in the harsh signal environment, UC6226 can still ensure fast and accurate positioning effect, and significantly reduce the average operating power consumption, substantially increase the standby time of devices, such as mobile phones, wearing devices and Internet of Things devices.

What's more, UC6226 has adopted the high integration design, and the chip has provided built-in DC/DC, LDO, LNA and RTC, etc. With the simple peripheral devices, it can achieve a complete GNSS receiver function, which can significantly reduce the PCB area and save hardware costs for users.

UC6226 QFN40 package is AEC-Q100-Compliant, is compatible with mainstream package.

1.2. Features

UC6226 has the following features:

- Positioning engine features
 - > 64-channel simultaneous tracking
 - Less than 1 second hot start time
 - > -147 dBm cold start sensitivity, -160 dBm tracking sensitivity
 - > Up to 5 Hz data update rate
- Supports GPS, BDS, GLONASS and Galileo
- Supports 26 MHz TCXO
- Supports external 32.768 kHz crystal
- Built-in DC/DC and power management unit
- Supports ROM built-in firmware and Flash expansion firmware
- Automotive grade 5.0 mm x 5.0 mm QFN40 package, 0.4 mm pitch

1.3. Performance Specifications

GNSS performance specifications of UC6226 are as follows:

Table 1-1 UC6226 GNSS performance

Item	Description	
Positioning accuracy		
Single point positioning	<2.0 m ¹	
Velocity accuracy	0.1 m/s	
Sensitivity ²		
	GNSS	
Cold Start ³	-147 dBm	
Tracking	-160 dBm	
Hot start	-154 dBm	
Reacquisition	-158 dBm	

¹ CEP, 50%

 $^{^2~}$ The sensitivity index needs C/N0 attain 41dB when the signal strength is -130dBm $\,$

³ Externally matches LNA to ensure superior performance

TTFF ⁴		
Cold start	<28s	
AGNSS	<4s ⁵	
Hot start	<1s	
Reacquisition	<1s	

1.4. System Block Diagram

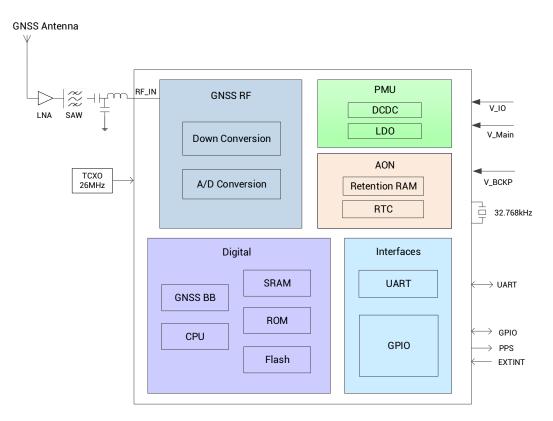


Figure 1-2 UC6226 chip block diagram

1.5. Satellite Navigation Systems

UC6226 supports multiple GNSS systems, including GPS, BDS, GLONASS and Galileo. RF uses a broadband design that simultaneously receives and processes satellite signals from multiple satellite systems, including GPS L1, BDS B1, GLONASS L1 and Galileo E1, which can receive or process two or three of them in parallel.

⁴ Satellite signal strength is up to -130dBm

⁵ Prompt injection of assisted ephemeris

1.5.1. GPS

The UC6226 can receive and track GPS L1 signal at 1575.42 MHz.

1.5.2. GLONASS

UC6226 can receive and track GLONASS L1 signal, the signal frequency is 1602 MHz + k * 562.5 kHz, k = -7 ~ +6. Users can design GLONASS receivers in compliance with regulatory requirements.

1.5.3. BDS

UC6226 can receive and track the BDS satellite navigation system's 1561.098 MHz B1 signal. It can combine with GPS to receive and track the BDS B1 satellite signal, increase the coverage, improve reliability and improve accuracy.

1.5.4. Galileo

UC6226 can simultaneously receive and track GPS and Galileo signals, as well as enhance accuracy and coverage.

1.6. Protocols and Interfaces

UC6226 data protocol complies with "Unicore Protocol" specification. By default, UC6226 communicates with host device via UART. For the technical parameters of the various protocols, supported communication interfaces and firmware versions, please refer to the *UFirebird_Standard Positioning Products Protocol Specification* documentation.

1.6.1. Terms and Abbreviations

The following table lists the terms and abbreviations involved or used in this document:

Abbreviations	Complete Description or Name		
A/D	Analog/Digital		
ADC	Analog Digital Convertor		
AGC	Automatic Gain Control		
AGNSS	Assisted GNSS		
BB	Baseband		
СР	Chip Probing		
DC/DC	Direct Current to Direct Current		

Table 1-2 List of terms and abbreviations

Abbreviations	Complete Description or Name		
DGNSS	Differential GNSS		
FT	Final Test		
Galileo	Galileo Navigation Satellite System		
GLONASS	Global Navigation Satellite System		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
LDO	Low DropOut regulator		
LNA	Low Noise Amplifier		
PDR	Pedestrian Dead Reckoning		
PGA	Programmable Gain Amplifier		
PIO	Programming Input/Output		
PLL	Phase Locked Loop		
PMU	Power Management Unit		
POR	Power On Reset		
RAM	Random Access Memory		
RF	Radio Frequency		
RTC	Real-Time Clock		
SBAS	Satellite-Based Augmentation System		
SAW	Surface Acoustic Wave		
SPI	Serial Peripheral Interface		
SQI	Serial Quad I/O		
тсхо	Temperature Compensate Crystal Oscillator		

2. RF Subsystem

RF subsystem adopts wideband design. The input signal is centered at about 1575MHz with a 100 MHz band width. The received GNSS signals are amplified by a Low Noise Amplifier (LNA), and then fed to a gain block, which offers further amplification, thus reducing the noise figure requirements for the mixer. The gain block also provides a single-ended to differential conversion.

After the complex down-conversion, the multi-GNSS signals are split up into I and Q channels. Afterwards both channels are I/Q low-pass filtered and amplified by separate Programmable Gain Amplifiers (PGA). The amplified I and Q signals will do the A/D conversion to get 6-bits I/Q digital signals that are then sent to baseband section, where signal processing and final image rejection take place.

2.1. LNA

The low noise amplifier (LNA) makes use of a single stage configuration and requires external matching to function satisfactorily. For improved performance, an external LNA should be added, of which the gain range is recommended to be within 17dB~45dB. Moreover, it is necessary to use an external SAW filter to suppress out-of-band interference.

2.2. Gain Block

A single stage differential amplifier follows the LNA providing further amplification and conversion from single-ended to differential signaling.

2.3. Mixer

UC6226 uses the active I/Q mixer to first convert the multi-GNSS signals to an intermediate frequency. At this stage the signals are split into two similar IF channels. Both channels are further amplified and converted into different GNSS signal band.

2.4. I/Q Low-Pass Filter (LPF)

The low-pass filter removes any high-frequency from the desired signal. For single GNSS system signal reception, their cut-off frequency and band width are adjusted lower to reduce power consumption.

2.5. PGA

The programmable gain amplifiers (PGA) are used to provide the ADCs with appropriate input IF signals. The PGA gain is automatically looped and adjusted based on the ADC output signal values, providing an automatic gain control (AGC) for the receiver.

PGA gain can be configured as a fixed value via GPIO to improve system's robustness, which is suitable for applications that integrate with mobile communication functions.

2.6. ADC

Two 6-bit ADCs are used for A/D conversion in the UC6226. I and Q-branch ADCs output 6bit signals respectively, which then enter into baseband subsystem for processing.

3. Baseband Subsystem

3.1. Interfaces

The digital I/O of the baseband section is powered by VDD_IO, and the VDD_IO level is the same as applied logic voltage level. Without supplying VDD_IO, the UC6226 will not work.

As the UC6226's selected digital IO does not support anti-current backflush function, IO interface should not be supplied power separately in the case of power down in the actual application. Please see the note in 3.2 for details.

3.1.1. UART

The UC6226 makes use of two UART interfaces, UART1 and UART2, which can be used for communication with a host. Both of them support configurable baud rates up to 921600bps.

By default, PIO6/PIO7 corresponds with UART1, which is the main UART port in standard firmware version. The communication interface of the UC6226 can be mapped to a different PIO interface via D_SEL. PIO6/PIO7 can also be used as an SPI, at which point UART1 will be mapped to PIO15/PIO16. Refer to the note in 3.2 for D_SEL usage and corresponding communication interface mapping.

UART2 can use PI017/PI018, or PI010/PI012, or PI02/PI03. By default, UART2 will use PI017/PI018 in the standard firmware. UART2 is mainly used for transmitting or debugging auxiliary information.

3.1.2. SPI

SPI is reserved and is not supported currently.

3.2. PIO

The PIO module may be configured as a GPIO or as the aforementioned communication interface. The following table describes all PIO functions.

Table 3-1 PIO functions

PIO #	Default Function	I/O	Description	Alternate Function
0	GPIO	I/O	NC	
1	GPIO	I/O	NC	
2	GPIO	I/O	NC	TIMEPULSE, UART2 TX
3	GPIO	I/O	NC	TIMEPULSE, UART2 RX
4	GPIO	I/O	NC	
5	GPIO	I/O	NC	
6	ТХІ	0	UART1 TX (if D_SEL is high at startup)	GPIO
7	RX1	I	UART1 RX (if D_SEL is high at startup)	GPIO
8	GPIO	I/O	NC	SCL
9	GPIO	1/0	NC	SDA
10	D_SEL	1	Communication interface selection pin. This pin forces a pull up by default	
11	TIMEPULSE	0	1PPS output	EVENT
12	BOOT_MODE	I	Bootstrap mode selection pin. This pin forces a pull up by default	UART1 TX, UART2 TX
13	GPIO	I	No function by default EVENT, UART1 CTS, SCL	
14	No function	I	Can be configured asEVENT,antenna detection inputANT_DET	
15	ANT_OK	I	Antenna status detection ANT_SHORT	
16	ANT_OFF	0	Antenna power supplySPD_PULSEcontrol output and outputstate is related to the PIO15statestate	
17	UART2 RX	I	UART2 RX	SCL
18	UART2 TX	0	UART2 TX	UART2 TX
				SDA

As the digital IO selected by UC6226 does not support anti-current backflush function, please pay attention to the following points in development and application:

1) When VDD_IO and V_DCDC_IN/V_CORE use the same power supply: users should pay attention to the signal state of host port that communicates with UART and functional ports connected with UC6226 when power down. If host computer wants to control the chip power down, users should first set the ports that connect with UC6226 to high impedance state so as to prevent UC6226 from consuming host computer's power or failing to start up.

2) In case VDD_IO and V_DCDC_IN/V_CORE do not use the same power supply, users can cut off V_DCDC_IN/V_CORE power supply to achieve the purpose of chip power-down.

3.3. Watchdog

The UC6226 includes a watchdog timer, which prevents system-lockups caused when the software gets trapped in a deadlock. During normal operation, the firmware resets the watchdog's internal counter at regular intervals before timer overflow occurs.

3.4. Timer Counter

The timer counter has one TIMEMARK input and one TIMEPULSE output. TIMEMARK can be input via PIO11, PIO13 or PIO14, but only be input through one of the PIOs. TIMEMARK inputs (routed through EXTINT0 and EXTINT1) is timestamp events relative to GPS time.

TIMEPULSE can be output via PIO2, PIO3 or PIO11, but only one TIMEPULSE can be output at one time. TIMEPULSE outputs generate pulse sequence synchronized with GPS or UTC time grid, time intervals can be configured over a wide frequency range.

3.5. Clock

3.5.1. TCXO

The UC6226 requires an external 26MHz clock, which can be provided by TCXO, providing reference frequency for RF and baseband PLLs.

3.5.2. PLL

The fully integrated, low-power PLL generates the system clock from the 26MHz reference frequencies supplied by TCXO.

3.5.3. RTC

The RTC is driven internally by a 32.768 kHz oscillator, which makes use of an external 32.768 kHz crystal.

If the main supply voltage and IO power supply fail and a backup battery is connected to V_BCKP, the baseband, RF, CPU will switch off, but the RTC still runs providing a timing reference for the receiver. This operating mode is called RTC puncturing mode. Under the RTC puncturing mode, the relevant data are still saved in the Retention RAM.

The RTC puncturing mode is required for GNSS hot start function. If RTC is abnormal, it will affect the performance of hot start.

If Retention RAM and RTC are not used, UC6226 does not require a backup battery, and V_BCKP has to be connected to VDD_IO.

The standard firmware supports 32.768 kHz by default. And UC6226 also supports external digital clock signal of 32.768 kHz directly input into the RTC_I pin to replace the crystal. When the external digital clock signal is used to input RTC_I, please note that its signal amplitude should be within 0.9 V~1.05 V, otherwise it may cause damage to the components of UC6226.

3.5.4. Clock Source Combination

Main clock input	RTC clock input	Description
26MHz TCXO provides clock	32.768 kHz crystal provides	Normal use
connection to XTAL_I	clock connection to RTC_I and	V_BCKP must be provided by
	RTC_O	battery to keep RTC running
26MHz TCXO provides clock	32.768 kHz external digital	Normal use
connection to XTAL_I	signal to RTC_I	V_BCKP must be provided by
		battery to keep RTC running
26MHz TCXO provides clock	No clock input	If you do not use the RTC, then
connection to XTAL_I		connect RTC_O to ground and
		leave RTC_I floating. Under this
		condition, GNSS hot-start
		function is disabled.

Table 3-2 clock source combination

For the application of the above clock source combination, the following should be noted in the design:

- When using 26 MHz TCXO, the TCXO can be powered by LDO_X or external power supply, XTAL_O should be kept floating.
- When 32.768 kHz external digital signal is used as the RTC clock, its waveform amplitude must be attenuated to 0.9 V_{p-p}~1.05 V_{p-p}, with its maximum not higher than 1.05 V and the minimum not lower than -0.2 V. The clock drift should between

±0.6 Hz, 20 ppm.

3.6. Power Management Unit (PMU)

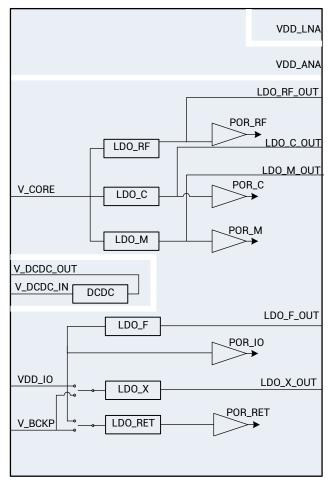


Figure 3-1 Power Management Unit (PMU)

The PMU provides four power domains that are internally generated by LDOs and supervised by several voltage monitors:

> Core

The core domain is the main power domain for the RF and logic inside the chip. Two subsequent LDOs (LDO_C and LDO_RF) convert V_CORE source, and convert V_CORE to respective voltages, which must be decoupled through LDO_C_OUT and LDO_RF_OUT pins respectively. The LDO_C drives the digital logic parts, and the LDO_RF drives the RF and analog circuits.

LDO_RF_OUT does not directly connect or drive RF circuits on-chip. Instead, users should connect it to the VDD_LNA and VDD_ANA on PCB to feed the supply into the on-chip RF circuits. It is recommended that users should use noise-resistant connections to improve RF

performance, such as using magnetic beads.

In the case that UC6226 is powered by on-chip DC/DC, voltage range for V_CORE pin is 1.0V-1.2 V; in DC/DC bypass mode, V_CORE allows the input voltage range of 1.2V-1.98V.

> 10

The IO power domain is powered by VDD_IO, including chip IO devices, on-chip Flash, ADC converters and eFuse. The supply voltage of VDD_IO is 3.3V centered (3.0V – 3.6V). Except IO pads, the other devices are powered by a dedicated LDO_F to ensure 1.8V supply voltage for on-chip flash, ADC and eFuse. The LDO_F must be connected with a decoupling capacitor through LDO_F_OUT pin.

> Backup

The backup domain runs the RTC section and the Retention RAM. This domain uses the voltage sources of VDD_IO and V_BCKP. In case VDD_IO voltage is inside the normal range, it uses VDD_IO, otherwise use V_BCKP. The allowed voltage range of V_BCKP is 1.65V-3.6V.

➤ TCXO

If using 26MHz TCXO and TCXO is powered by LDO_X, LDO_X_OUT should be connected to the power pin of TCXO and decoupling capacitance. And user can also choose an external power source other than LDO_X to make TCXO work. Note that if TCXO used as the main clock source, and the clock source is used to drive RTC, do not design the hardware backup function, V_BCKP can't provide the working current required by TCXO.

3.6.1. DC/DC Converter

UC6226 integrates a DC/DC converter, allowing reduced power consumption and cost, especially when using a single supply voltage. To use the chip DC/DC converter, the main power supply must be connected to V_DCDC_IN and a capacitor and an inductor must be added to connect V_DCDC_OUT to V_CORE. If a DC/DC converter is not used, connect V_DCDC_IN/V_DCDC_OUT to V_CORE.

If a DC/DC converter is used, the allowable input voltage range for V_DCDC_IN is from 3.0 V to 3.6 V. If the DC/DC converter is not used, the allowable input voltage range for V_DCDC_IN/V_CORE is from 1.2V to 1.98V. The UC6226 chip will be damaged if power supply exceeds maximum allowable voltage range.

For all power supply, the voltage ripple should not exceed 50mV.

4. Operating Modes

4.1. Continuous Tracking Mode

Under the full-speed operation mode, the chip's hardware tracking channel will uninterruptedly process satellite signals, to ensure the accuracy of positioning, velocity, and TTFF through high-quality signal acquisition and tracking.

4.2. Sleep Mode

The chip is powered off except for the RTC time keeping unit and Backup RAM. Users can easily wake up according to actual needs. Under the sleep mode, the chip operates at very low power levels and can realize hot start quickly after waking up.

5. System Configuration

5.1. Configure the Communication Interface

The standard communication interface of UC6226 includes two UART serial ports.

5.2. Configuration Pins

There are two configuration pins: BOOT_MODE (PIO12) and D_SEL (PIO10). When the chip is powered on, the two pins should be pulled up.

5.3. System Reset

According to the power structure of UC6226 chip, there are two reset domains: the Core domain and the Backup domain. The Core domain contains all circuits clocked by 26 MHz clock, and Backup domain contains RTC circuits and Retention RAM.

The main RESET controls the reset of the Core domain, and the main RESET domain has the following reset sources:

- POR_IO is used to detect the IO voltage. When the IO voltage is lower than 2.93 V, the reset signal will be sent to the Core domain;
- POR_DCDC is used to detect the DC/DC input voltage. In the DC/DC mode, when the DC/DC voltage is less than 3.0 V, the reset signal will be sent to the Core domain; In the DC/DC bypass mode, when the voltage is less than 1.2 V, the reset signal will be sent to the Core domain;
- POR_C is used to detect the core voltage. When the core voltage is less than 90% of the firmware preset voltage, the reset signal will be sent to the Core domain ;
- POR_RET is used to detect the voltage of the backup power domain. When the voltage of the backup power domain is less than 0.6V, the reset signal will be sent to the Core domain;
- RESET_N is the reset pin of the chip. When its level is low and the state keeps for more than 5 milliseconds, the reset signal will be sent to the Core domain;
- > The reset signal of the software system is controlled by the firmware;

➢ Watchdog RESET.

If any of the above reset sources issues a Core domain reset signal, the Core domain will be reset.

The Backup RESET domain has the following reset sources:

- > POR_RET is used to detect the supply voltage of backup power domain;
- > The RTC RESET signal is a soft reset which is controlled by the firmware..

If any of the above reset sources issues a backup domain reset signal, the backup domain will be reset.

5.4. Power on Sequence

In general, there are two scenarios for UC6226 power supply: to use the internal DC/DC, or bypass the internal DC/DC. The RTC region and VDD_IO region are independent of the main power supply, and the power-on sequences do not affect or depend on each other.

It should be noted that after UC6226 is powered on, a start-up time of more than 230ms must be guaranteed. If the power is cut off in less than 230ms, the chip may work abnormally and V_BCKP may consume more power.

5.4.1. DC/DC Power-on and Sequence

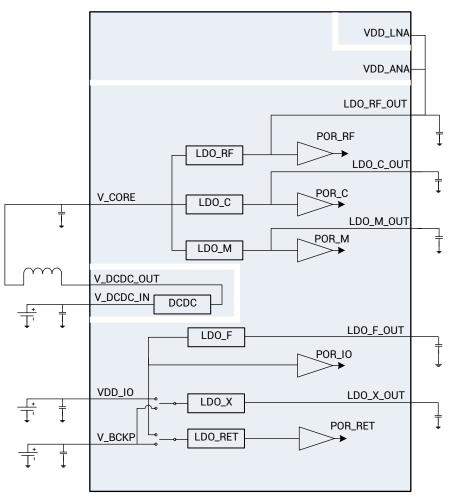


Figure 5-1 DC/DC power-on and sequence

With the internal DC/DC, the supply efficiency is maximized. The main supply is connected to V_DCDC_IN pin, which is independent with VDD_IO.

The power on time for main supply and the VDD_IO should be shorter than 10ms and the power supply ramp should be monotonic. But there is no sequence requirement between the main supply and the VDD_IO. However, the missing of any of these two supplies will keep the main circuit in reset state.

When V_BCKP continues to power, the status of the main supply or VDD_IO does not affect the status of RTC region.

5.4.2. DC/DC Bypass Power-on and Sequence

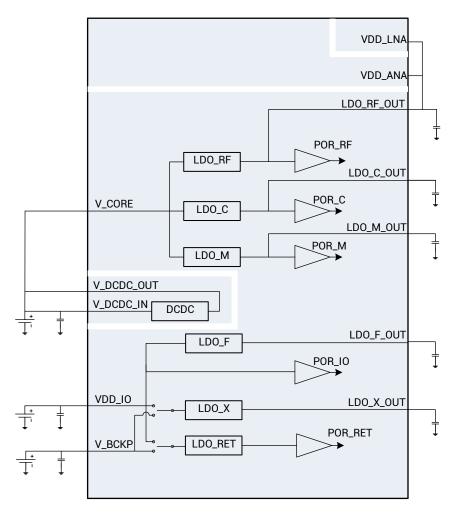


Figure 5-2 DC/DC bypass power-on and sequence (Main Supply is 1.2V ~ 1.98V)

Without the internal DC/DC, the number and cost of external components are minimized. In this case, the main supply is connected to V_DCDC_IN, V_DCDC_OUT and V_CORE pins, which is independent with VDD_IO.

Please pay attention that the allowed input voltage of main supply in this mode is limited to 1.2V
-1.98V. The supply voltage higher than 1.98V will cause permanent damage of UC6226 chip.

The power on time for main supply and the VDD_IO should be shorter than 10ms and the power supply ramp should be monotonic. There is no sequence requirement for the main supply and the VDD_IO. However, the missing of any of these two supplies will keep the chip in reset state.

When V_BCKP continues to power, the status of the main supply or VDD_IO does not affect the status of RTC region.

5.4.3. Power on Sequence for Backup Region

The Backup region is powered by the output of an internal power switch, which switches between the IO supply from VDD_IO pin and the backup supply from V_BCKP pin. In order to minimize the backup battery consumption, only when the VDD_IO is powered off does the switch change to V_BCKP supply.

If neither VDD_IO nor V_BCKP is powered, the backup region does not work. If any one of pins is supplied, the backup region will be reset and soon start to be functional.

6. Pin Definitions

6.1. Pin Distribution

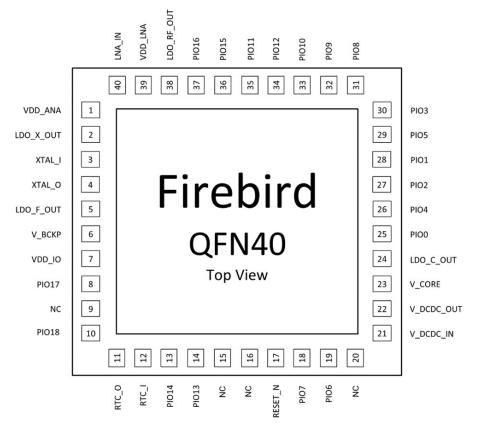


Figure 6-1 QFN40 pin diagram

6.2. Pin Description

Table 6-1 Description of QFN40 Power Supply Pin

Name	Pin	Power Domain	Description
V_DCDC_IN	21	DC/DC	DC/DC input
V_DCDC_OUT	22	DC/DC	DC/DC output
V_CORE	23	Core	Core supply
V_BCKP	6	Backup	Backup cell supply
VDD_IO	7	10	I/O, TCXO and Flash power supply
VDD_ANA	1	Core/RF	Power supply of analog section
VDD_LNA	39	Core/RF	LNA power supply
LDO_RF_OUT	38	Core/RF	RF power output
LDO_C_OUT	24	Core/Logic	Core power output
LDO_X_OUT	2	Clock	TCXO/crystal power output
LDO_F_OUT	5	Flash	Flash power output
PADDLE	0		Ground

Table 6-2 Description of QFN40 Analog Pin

Name	Pin	Power Domain	Description
LNA_IN	40	RF	LNA input (LNA requires an external input matching)
XTAL_I	3	Clock	26MHz TCXO clock input
RTC_I	12	Backup	32.768kHz crystal or digital clock signal input
RTC_0	11	Backup	32.768kHz clock output
RESET_N	17	10	System reset
NC	/	N/A	NC, please keep float

Table 6-3 Description of QFN40 PIO Pin

Name	Pin	Power Domain	I/O Reset	I/O Core off	Description
PI00	25	10	l/pull-up	l/pull-up	IO PIO0
PI01	28	10	l/pull-up	l/pull-up	IO PIO1
PI02	27	10	l/pull-up	l/pull-up	IO PIO2
PI03	30	10	l/pull-up	l/pull-up	IO PIO3
PI04	26	10	l/pull-up	l/pull-up	10 PI04
PI05	29	10	l/pull-up	l/pull-up	IO PIO5

Name	Pin	Power Domain	I/O Reset	I/O Core off	Description
PIO6	19	10	0/pull-up	l/pull-up	IO PI06
PI07	18	10	I/pull-up	I/pull-up	10 PI07
PI08	31	10	I/pull-up	I/pull-up	IO PI08
PIO9	32	10	I/pull-up	l/pull-up	IO PI09
PI010	33	10	l/pull-up	I/pull-up	10 PI010 or
					D_SEL
PI011	35	10	l/pull-up	l/pull-up	IO PI011
PI012	34	10	l/pull-up	I/pull-up	IO PIO12 or
					BOOT_MODE
PI013	14	10	I/pull-down	I/pull-down	IO PI013
PI014	13	10	I/pull-down	I/pull-down	IO PI014
PI015	36	10	I/pull-up	I/pull-up	IO PI015
PI016	37	10	I/pull-up	l/pull-up	IO PI016
PI017	8	10	I/pull-up	l/pull-up	IO PI017
PI018	10	10	l/pull-up	I/pull-up	IO PI018

7. Electrical Specifications

7.1. Maximum Absolute Rating

Table 7-1 Maximum absolute rating

Symbol	Parameter	Min.	Max.	unit
V_DCDC_IN	Input voltage of the internal DC/DC converter	-0.2	3.6	V
V_CORE,	Supply voltage of baseband main core	-0.2	1.98	V
V_DCDC_OUT	and RF LDOs inputs			
	Output voltage of the internal DC/DC converter			
VDD_IO	VDD_IO_3.3V VIL	-0.2	0.7	V
	VIH	1.2	3.6	
V_BCKP	Supply voltage of backup domain and	-0.2	3.6	V
	LDO_X inputs			
VDD_ANA,	Supply voltage RF domain	-0.2	0.99	V
VDD_LNA				
Vi	Input voltage on XTAL_I	-0.2	1.05	V
Vi _{ana}	Input voltage on RTC_I	-0.2	1.05	V
Vi _{dig}	Input voltage on PIO0-18 and	-0.2	3.6	V
	RESET_N			
P _{rfin}	RF input power on LNA_IN		+15	dBm
P _{tot}	Total power		100	mW
T _{jun}	Junction temperature	-40	+125	°C
Ts	Storage temperature	-50	+150	°C
ESD	НВМ	-2000	2000	V

7.2. Working Conditions

Table 7-2 QNF40 working conditions

Symbol	Parameter	Condition	Min.	Typical	Max.	unit
T _{amb}	Environment		-40	+25	+85	°C
	temperature					
V_DCDC_IN ⁶	Input voltage of		3.0	3.3	3.6	V
	the internal DC/DC					
	converter					
V_CORE ⁷	Supply voltage of		1.2	1.8	1.98	V
	baseband main					
	core and RF LDO					
	inputs					
VDD_IO	Supply voltage of	3.3V centered	3.0	3.3	3.6	V
	I/O, LDO_X and					
	flash;					
V_BCKP	Supply voltage of		1.65	3.3	3.6	V
	backup domain					
	and LDO_X inputs					
VDD_ANA ⁸ ,	Supply voltage of		0.65	0.7	0.75	V
VDD_LNA	RF domain					
F _{ref}	Reference clock			26		MHz

7.2.1. DC Electrical Characteristics

Table 7-3 DC electrical characteristics

Symbol	Parameter	Min.	Typical	Max.	unit
VDD_IO	Supply voltage for PIOs and input voltage for LDO_F and LDO_X	3.0	3.3	3.6	V
V_DCDC_IN	Input voltage for DC/DC converter	3.0	3.3	3.6	V
V_CORE (Internal DC/DC power supply)	Input voltage for LDO_C and LDO_RF	1.0	1.1	1.2	V

⁶ In order to make sure the chip starts normally, V_DCDC_IN and VDD_IO should be lower than 0.4V before starting up.

⁷ If V_CORE is used to power the chip directly, V_DCDC_IN and V_DCDC_OUT must be connected to V_CORE

⁸ In general, VDD_ANA and VDD_LNA should be powered by LDO_RF_OUT. If other design is required, please contact Unicore to obtain technical support.

Symbol	Parameter	Min.	Typical	Max.	unit
V_CORE	Input voltage for LDO_C	1.2	1.8	1.98	V
(Internal DC/DC is not	and LDO_RF				
used)					
V_BCKP	Input voltage for LDO_B	1.65	3.3	3.6	V
	and LDO_X (backup mode)				
ILDO_X_OUT	LDO_X output current			5	mA
LDO_X_OUT	LDO_X output voltage		-		V
	(With 26MHz TCXO)				
	(For 1.9V TCXO) default		1.9		
	(For 2.6V TCXO)		2.6		
	(For 3.0V TCXO)		3.0		
LDO_RF_OUT9	LDO_RF output voltage	0.65	0.7	0.75	V
LDO_F_OUT ¹⁰	LDO_F output voltage	1.71	1.8	1.95	V
LDO_C_OUT ¹¹	LDO_C output voltage	0.80		0.95	V
VDD_ANA	Power supply pin	0.65	0.7	0.75	V
VDD_LNA	Power supply pin	0.65	0.7	0.75	V
I _{PPS}	PPS Output Current ¹²			4	mA

7.2.2. Analog Parameters

Table 7-4 Analog parameters

Symbol	Parameter	Condition	Min.	Typical	Max.	unit
RTC_Fxtal	RTC crystal oscillator			32768		Hz
	resonant frequency					
RTC_T_start	RTC startup time		0.2	1	2	S
RTC_losc	32.768 kHz OSC			3		μA
	current source					
RTC_Amp	32.768 kHz OSC	ESR = 80 kΩ	50		350	mVpp
	amplitude					
RTC_ESR	32.768 kHz Xtal				90	kΩ
	equivalent series					
	resistance					
RTC_CL	RTC integrated load	ESR = 80 kΩ	7	12.5	12.5	pF
	capacitance					

 $^{\rm 9}$ $^{\rm 10\,11}$ If external voltage supply is needed, please contact Unicore Communications, Inc.

¹² Without external resistor

Symbol	Parameter	Condition	Min.	Typical	Max.	unit
RTC_Vil	RTC low level input voltage	Shared RTC oscillator input	0.0		0.2	V
RTC_Vih	RTC high level input voltage	Shared RTC oscillator input	0.7		0.9	V
DCDC_eff	DC/DC efficiency	Input 3.3V, 2mA- 40mA, external components L = 4.7µH, C = 10uF		82		%

7.2.3. RF Parameters

Table 7-5 RF parameters

Symbol	Parameter	Condition	Min.	Typical	Max.	unit
Fin	Receiver input		1550	1575.42	1620	MHz
	frequency					
LNA_IN	LNA input impedance	Require matching		50		Ω
		devices and DC				
		blocking				
		capacitors.				
		Matching device				
		typical value: series				
		inductance L =				
		7.5nH, ground				
		capacitance C =				
		3pF.				
		The typical value of				
		DC blocking				
		capacitor is 47pF.				
LNA_S11	LNA input return loss	50Ω environment		-10		dB
NFtot	Receiver chain noise	50Ω environment		2.5		dB
	figure					
Ext_Gain	External gain before	50Ω environment			45	dB
	matching					
TCXO_Freq	TCXO frequency			26		MHz
TCXO_IN_Vpp	TCXO input peak-to-		0.3	0.6	1	V_{pp}
	peak voltage					

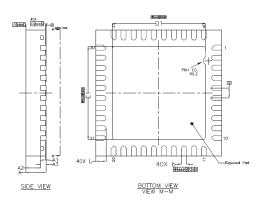
7.2.4. Current Consumption

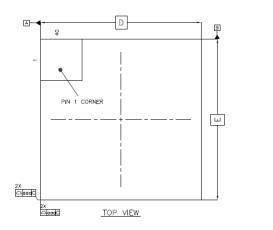
Table 7-6 current consumption

Symbol	Parameter	Condition	Typical	unit
I _{BCKP}	V_BCKP backup	Retention RAM powered	70	μA
	current using the RTC	(V_BCKP = 3.6V,		
	crystal	VDD_IO = V_CORE = 0V)		

7.3. Reference Power Requirements

The table below lists examples of the total system supply current including RF and baseband section for a possible application.


Values listed below are provided for customer information only as an example of typical current requirements (the basic frequency of system is 66MHz). Values are characterized on samples – actual power requirements can vary depending on Firmware version used, external circuitry, number of SVs tracked, signal strength, type and time of start, duration, and conditions of test.


Table 7-7 Reference power requirements

Symbol	Parameter	Condition	Typical	unit
I _{vdd_io}	IO current	V_CORE=0V	200@3.3V	uA
		No external peripherals		
I _{V_DCDC_IN}	V_DCDC_IN current	Acquisition (multi-GNSS)	24	mA
	@ 3.3V, V_CORE = 1.1V	Tracking (multi-GNSS)	12	_

The operating current of UC6226 is related to the features of firmware, including operating frequency, voltage, GNSS firmware strategy, etc.

8. Mechanical Specifications

DESCRIPTION		SYMBOL		MILLIMETER	1	
DESCRIPTION		STMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		A	0.70	0.75	0.80	
STAND OFF		A1	0.00		0.05	
MOLD THICKNESS		A2	0.50	0.55	0.60	
L/F THICKNESS		A3		0.203 REF	-	
LEAD WIDTH		b	0.15	0.20	0.25	
BODY SIZE	Х	D	4.90	5.00	5.10	
BOUT SIZE	Y	E	4.90	5.00	5.10	
LEAD PITCH		e	0.40 BSC			
EP SIZE	Х	D1	3.65	3.70	3.75	
EP SIZE	Y	E1	3.65	3.70	3.75	
LEAD LENGTH		L	0.35	0.40	0.45	
	Toler	ance of form	and position	1		
PACKAGE EDGE TOLEF	RANCE	aaa		0.1		
MOLD FLATNESS		bbb		0.1		
COPLANARITY		CCC	0.08			
LEAD OFFSET		ddd	0.1			
EXPOSED PAD OFFSE	Г	eee		0.1		

Figure 8-1 QFN40 Mechanical Parameters

9. Reliability Test and Certificate

9.1. Reliability Test

UC6226 chips are qualified with appropriate JEDEC standards, e.g. JESD47 Stress-Test-Driven Qualification of Integrated Circuits.

UC6226 chips that meet automotive reliability test standards are qualified according to AEC-Q100 (Grade 3). Please refer to Chapter 12 for the specific order model.

9.2. Certificate

Products marked with lead-free symbol on the product label comply with the "Directive 2002/95/EC of the European Parliament and the Council on the Restriction of Use of Certain Hazardous Substances in Electrical and Electronic Equipment". UC6226 chips are RoHS and REACH compliant.

10. Reflow Soldering

The reflow soldering temperature curve is recommended as shown in Figure 10-1 below (M705-GRN360 is recommended for solder paste).

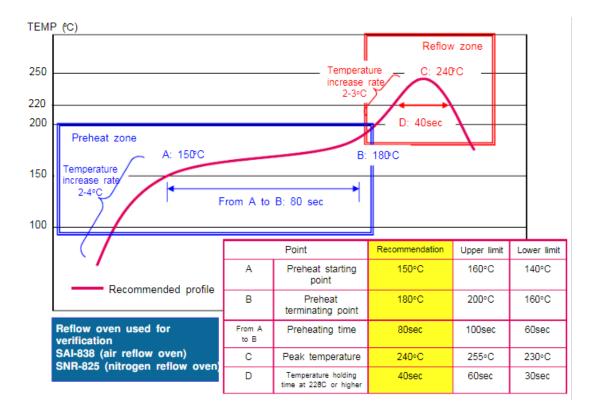


Figure 10-1 Reflow Soldering Temperature Curve

11. Product Appearance and Packaging

11.1. Appearance

Figure 11-1 QFN product appearance

UC6226 chip's appearance is shown in the above picture, the marking information may vary from customer order code, please follow the actual order.

11.2. Label

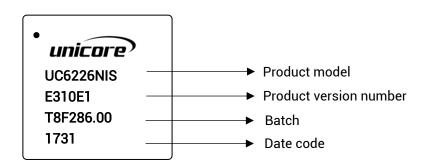


Figure 11-2 QFN product label description

Table 11-1 Specific description of product label

Code	Description
UC6226	Main model of product
Ν	Package type code: N - QFN Package
I	Level: A – Automotive grade; I - Industrial grade
S	Whether containing built-in Flash: S-Flash built-in

Code	Description
E	Internal code
310	Internal code
E1	Efuse configuration number
1731	Production date

11.3. Packaging

UC6226 adopts tape packaging, QFN40 contains 3000 pieces in each package. The packaging is as follows:

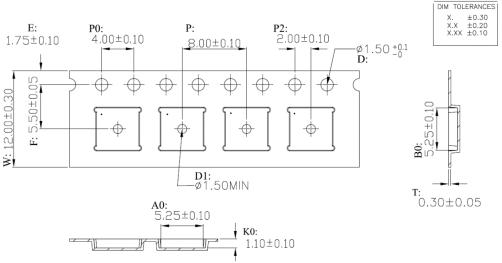


Figure 11-3 UC6226 Tape packaging

Tape specifications are as follows:

- 1. 10-hole spacing cumulative tolerance is ± 0.20mm;
- 2. All dimension sizes meet EIA-481-C requirements;
- 3. Thickness: 0.3 ± 0.05mm

12. Ordering Codes

Table 12-1 Ordering Codes

Order Number	Description
UC6226NIS	QFN40 package, industrial grade, built-in Flash, supports firmware update.
-E310E1	VDD_IO input voltage: 3.0~3.6V
UC6226NAS	QFN40 package, automotive grade, compliant with AEC-Q100, built-in Flash,
	supports firmware update

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路7号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094 www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicorecomm.com